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1.0 Introduction

COMMONAUTY

Albert E. Beaton

March 2,19773

Regressionanalysis is often used in both the physical
and social sciences. However, regression analysis is, most useful
when the so-called

independent variables are truly independent in
the sense that they can be experimentally manipulated,

' experimenter can fix the values o.f all but one independent variable
f4. -.then Vary the value of the remaining variable; then choose a second

variable to manipulate, and so forth. The principles of experi-
-

mental design show that for'a given sample size end assuming. an
underlying linear relational-lip the experiienter should select

.11

values af.the independent variables to be far apart 'and uncor- related
resulting in unbiased estimates of the regression

coefficients that
are most precise ceteris paribus In the sense

errors are smallest. In this case, the squared multiple correlation,<: is simply the sum of the squares of the simple
correlations between: .6

the independent and dependent variables.

In survey research, random samples of persons are selected
from a defined

population.: Most variables cannot be independently
CD manipulated as in 4 designed

experiment; although stratified
:) sampling may Svoid

intercorrelation 'among some regressors, it
is very diffidUlt to stratify on many variables.

2
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orparameters can be computed from such samples, but the precision

of the estimates is lessened by correlations among regressor

variables'. Furthermore, the regressor variables do not contribute

independently to the squared multiple correlation, for -the squared

multiple correlation may be either larger or smaller than thesum
of.he squared simple correlations. Regression analysis may

'become more a tool for measuring correlatio.n.,or predictive power

than for estimating parameters of a causal system.

Commonality, analysis is an attempt to understand the

relative predictive power-of the regressor variables, both

individually and it combination. The squared multiple porrelation
is brokenup into elements assigned to each-ineiyidual regresaor,
and to each possible combination of regressors. The elements have
the property that the appropriate sums not only add to squared

. 4multiple correlations with all regressors, but "so to the squared

multiple correlation of,..any subset of variables,.including the

sim.ple correlations. Commonality analysis may be used as a pro
_

ce_dure to guide a stepwis regression.

CoRmondlity analysis does not tell us anything that cannot
be deduced from a :table Of squared multiple correlations. However,
commonality analysis does help us make comparison's in an organized
manner.

Commonality analysis is not new. Kempthorne (19 p. 304ff)
suggests the procedure briefly. Creaser and Valentine (1962) credit
Bottenberg and Ward (1963) for the same procedure although with a- ,

different focus. Newton and Spurrell (1967a, 1967b) arrived at the

3
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same method and present
interpreted examples. The name

commonality was suggested by Mood (1971) who derived the solution,
independently. A generalization for sets of variables was reported
by_ Wisler (1969) who also showed the relationship between
commonality analysis and part correlations.

Creager (1971a)- has
commented on the procedure and compared it to a factor, analytic
procedure (1971b). Mayeske et al (1969, 1973) have used the
technique extensively.

* Tbg purpose of this paper is to explore the procedurek/

further, to develop:i.ls properties, and to present a multivariate
generalization for the explorations of commonality in a situation
where there is more than one regressand. A new computer- oriented
algorithm is also presented.

ti
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2.0 Univariate Commonality

Univariate regression analysis assumes a linear model

y X(3 c
- ....

where y is a columPltector with elements yi (i 1,2,...,N)
representing the observed values of the regressand (also called'
dependent variables or criterion), X is an N x m matrix with
elements x

ij (j f 1,2,...,m)
representing the observed values of

the m regressor '(also
called.independent or predictor) variables

for the N observations, 8 is a coldmn vector of m unknown regressio
coeificiente, and e is a column vector' with elements e representing
thp unknown residuals (also called errors). For simplicity, y is

Airassumed to have a zero mean although all equations can be modified
to allow a non-zero valde; X is of rank m, the e ,are assumed
N ( 0 ,a 2)..

Commonality analysis requires the definition of the regressio

equation's between y and each possible combination of,the m_vari7
ables in X. To identify these regressions we define assubmodel

y
dal

.2 X 8 .es
8.8

whey-6 the subscript s represents in ascending.order the ns indices o
the, columns of X contnine in the model. We also define the com-

piementary subscript.i which represents the n_ =m-n
s indices in

..r
II-

,

.as.cending order of all colUmns of X,mot Oluded in s. For example,
if X has 6 variables and s = 03), then )' is an N by 2 'matrix

contalu4ng the first and third columns,ofX; -6 = (2456), and X.s

is nu N by 4 matrix containing the second, lourth, fifth and sixth

5



columns of X. s may be dropped if it"contains all m subscripts
a

in which case s is the null set. y does not require/subscript.

c is NID(0,a
2
) where

.s s

A IA A IA
."1.C c c c + X_JC (X 'X ) X, X-)0-s s -80 .8.8 .8.8 .8.8

and is the regression coefficients corresponding to the

n- variables not included in s and c is the estimate of'c computed

using all variables in he model.

The statistics usually computed in a regression analysis

are estimates of the regression coefficients

B m (XIX
8 8
)-1Xly

predicted values of the regressand,

A

-y .0 X
s
8
s

;

th residual vector
,

A A

s
y - X ;

the residual variance

.2 1 A A

s N-n
s
-1 e

s
e
s

;

the covariance of 0
s

A2
A a

1E
(X'X );. ;Os S8

.6 6
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and of 'the squared- multiple correlation (SMC)

Y S Y 8R2
=

Ye

2

s
The R

y will ordinarily be .written without the circumflex.
.

.

.

.Simple (Pearson product-moment) correlations may be written as r
ij.for the correlation of columns Xi and Xj of X and as r for the

correlation of Y with X. .

The estimates,of parimeterS for a subset s are not in
general the same estimates f the parameters in thd;-model as those
in,which..all regressors are included. For example,

A A
,

)-s.s -s-s -s-s-s.s
. .

Which indlcates $
s
is thesame as $ "-- only if *, .N . 8 .11,..,X1X- = 0 or 8- = 0; that is, If'X --and X-- are.uncorielated or

s s
4:13

t' s s
the regression coefficients of X-

s are zero, given 5(
s

. ,

.
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C

r
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The variance'of the regressand y may be partitioned._

..2 A2.2, .7.2 ^2.2 m m
A

j

0"... ^2aw 0101 + 0202 + ...+ B
m
a
m + 2 E E 4 6 cov + o

eij
.-

1.101 joi1. +1

.7 estimated
. ...--.where the 0

i
's are the/variances of the x's, the cov

ij
's are, -.....

-.
.2.

their covariances, and 0
e

is the unpredictable variance. The

variance of Y, therefore, can be broken into two par s
.2

ay -ap +ae

2
where o_ is the part of the variance of y associated with and

.peediCtable froui the independent variables.

Newton and Spurrell (1967a) discuss two facets of multiple
regression analysis: prediction and operation. These two uses comp'
ment each other since an understanding of a process can lead to more
efficient prediction and prediction is often the measure of under-
standing.of a process. 'In both cases one may wish to remove.
Okriables of little importance from a set of available variables.
this is, of course, one of the purposes of the analysis of vari-
ance which is so often used to test hypotheses that one or more
regression easfficients are not appreciably different from zero,

hylvotilesis equiviyentto tenting whether or not some independent
.variables are of little predictive importance.

the independent variables are mutually uncorrelated, then
the atnndard analysis of variance 1s quite useful, for we can see
whivh, if any, of the independent variables contribute significantly

.8



to prediction. If^the xis are correlated, however, an Orthogonal.ana]

of variance requires an a priori ordering of.the variables as in

A'h 2.2 2 .2 2. .2 2 , .2
0. arkial 02.102.1 + 83.1203,12 .+ 8m.12...m-lam.12...m-y

where the O's and e's are partial regression coefficients

2 2
variances, respectively; that is, 8 a

j..12... j -1 j.12...J-1

and

represents the regression coefficient and variance of variable i

with variables 1 through I-1 partialed out. This procedure is

useful if there is an a priori reason f6t ordering these tpde-

pendent variables, but there are m: different ways that the

variables may be ordered and different orderings will usually affect

the measured contribution to the predicted sum of squares. The

problem is that any variance in,common betweeh.two variables is

allocated entirely to,the former of the two variables in an ordering;

any predictive power a third variable has in common with two in an

earlier position is allocated entirely to the first two, and so

forth. The ordering, therefore, may' indeed affect our estimate of

the importance of independent variables.

4 .



The purpose of commonality analysis is to partition a

squared multiple correlation into elem&nts associated with each

(regressor) variable and, into elements associated with each

possible combination of 'regressors. The analysis shows in some
sense to what extent each individual variable affects the SMC

correlation by itself and how much it affects the SMC in combination

with other variables. If two variables have no commonality, then

the contribution of either is not affected by the entrance of the
-..-

other variable into the regression equation. If two variables

have a Ann-zero commonality, then'the entry of either variable

into a regression equation will affect the contribution of the

other. s

Commonality analysis generates elements such that the,sum.

of all elements equals the squared multiple correlation. It is also r

quIred that the sum of ell elements associated with a single

variable total to the sqUared simple correlation of that variable

with a regressand, that the sum of all elements associated with

either or both of two variables total to the squared multiple

correlation of those two variables with the regressand, and so
forth.

These relationships can be expressed for the two-regressor
(m=2) case as

1t2 = U
1
+ U

2
+ C

12,
(1)

where U
1

is the "uniqueness" or "unique",contribution of X
1

to the

SMC, U2 is the "unique" contribution of
2'

and C
12 is the common

element or commonality. The uniquenesses are considered first

10
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order Gcommonalitiks. The contribution of Xi alone is
U 2

r
yl 1l1 + C

12

and the contribution of X
2 alone -.is

2-
.r
y2 U

2
+ C

12

'
The relationships. in equatiAns 1;..2, and 3 cane be written in 4it,

matrix form as

R .0 GC

where

r

F.*

2
R?

(1)

2
R
y(2)

2
R(12)

,c

1.6
..1011P/

1 '0 1

0 1 1

1 1 1
C

--5

U1

U
2

C
12

We can then solve equation 5. for the commonality by

in which

C
-1

r

-1
C

0

-I

1

-1

0

1

1

1

-1

11



and the explicit solution for C is

U
1

as R
2

- R
2

y12 y2

U
2

a R
2

-
2

y12
R
yl

C im R
2 + R

2 m R 2

12 yl y2 y12

U
1
and U

2
are in fact sums of squares And as'such must be non-

hvgatIve,
C12 may

be eithert positive, .'negative -, or ;ero."

The logic for the three-variable case is Aimilar. There are

2
3-1 possible combinations of variables and, therefore, 1

.40

possible SMC's. The definition of the SMC's in terms of the,

commonalities are

4. 12



-1 0 0 1 1 0 1

0 3. 0 1 . 0 1 ; 1

0 0 1 0 1 1

2
R
12

1

R
2

1
13

2
R
23

0

2

(

R
12

1

'`

1 0 1 1 1 1

0 1 1 1 l' 1

1 1 1 1 4a 1.

1 1 -A. 1 1 1

ICY

solving for the

Ui

U2

U
3

C
12

C
13

C
23

t
12

'3

commonalities,' we f nd

0 0 0

.

0 -1 0

0 0 -1 1

0 -1 0 1 0

1 0, 0 1 1

1 1 -1 -1

1

0

-1

1

-1

1

-1

-1

-1

1

13

U2

3

C
23

C
123

4



An the comtlionality vector becimes more complex, it im
useful to organize the elements into a commonality table such
as shown in Figure 1

(INSERT FIGURE 1 ABOUT HERE)

The margin on, the right-hand side contains the vector of common-
ality coefficients and sums to R

2

y12...m* The columns in the body
of the table kclude the elements, .of each regressor and thus these
columns sum to the squared simple correlations.

. Some authors (e.g. ayeske et aI,1969 ) have found the
commonality table tore. useful when unitized, that is, when alln
elements are divided by the

lower right-hand corne

instead of to the SMC.

4

In this case; the element in the

ity and the elements add to unity

tined elements can be thought of as
proportions (percents) of predictable variance instead of pro-
portions (percents) of total variance:

The generalization of commonality,to four or more independent
variables is straightforward. If there. are m variables, then we have
M - equations in M unknowns formed by (Wining each possible

ns the sum of all elements common to 103 regressoi.s. The forma-
tion'aTO solution of such equations become tedious if M is large,
but- computer algorithms such as the one presented in Section 7 Ilse
a much simpler procedure and avoid the solution of large sets of
eqbations. The size of the commonality table may also be reduced
through definition of sets of variables -whi

this procedure is di-scusse. Section

14

h are treated as a unit;
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Figure X

3-VariziJ)Ie Cotaaaonality Table

Xi

u

X2 X3

U1

U2
U3

,U3

C12 'Cl2 C12
C13 C

13 Ci3
N C2 C23 C

23

C123 c121- C123 C123

D2- . 0.1
"Y(1) 'Y(2)- tY(3) 4"4-r(10).-

tt

4
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, The Tartitioning of the SMC

ne na ni

A C :E;
Y i su 1 .i=1

-

is, then,

s

Cif
1.-3. jii+1

of.

Cijk.

Mitslor (1.969) has
expressed.commonalities in terms of part

correlations which save been discussed by DuBois(1957). A part
correlation is the correlation between two variables'with one of
them-measuredas a residual from one or more Other

variables: (Partial
correlations measure the variables

correlation

1r . 01- 02r12
r r

y(1.2)
3.172-1,

12,

is the coxr latiop of y, with

as residuals).. The .part

1.2 i4ber X1.2 is the dual of
from the liridir

regression,of-Xl.on X2 . Wisler has =how
that uniqueness for.any variable X

i
is thisquared part correla-

tion fo Y,' with X when all other variables are regressed.
* I

2
ouf of X. -The Commonalities can then be expressed in terms of
these squared

-Partcorkelatl.ons.

Ch
Since commonality analysis may be used or declilng which

' regressor

Pr

is

variables to include in a regression equation, it is a
forstepWise regression analysis. If the research aim
maximization of prediction for a given number of vari-

vhe.n,commonality analysis is unnecessary since all possible

16



SMC's are computed as part of a commonality.analysis. Stepwise

regression may proceed as follows:

:tieing Newton and Spurrell .(1967b) Rule 1 which maximizes. the

reduction in residual sum of squares-at each stage of the re-

greeson by adding. the variable that reduces the SMC the most,

we would simply Kidd the variable with the highest sum of commonalities

We would then draw a. vertical line through that column and a hOri-

zontal line through each row which contains a c.ommonaliti in that

columq. We would then sum the columns again, resulting in new

totals that would correspond to the.covariance of the three re-.

maining variables with the largest partialed out. After selecting
a second variable, we would cross out the associate , rows and

columns, .retotal and proceed. Thip procedure,_,corresponds to

adding the variable'With the largest partialed correlation.-

Newtnn.and Spurrell suggest three other rules,;including (2)

selecting the variable with the largest primary (unique) e ent,
(3)- teleeting variables in which the uniqueness is large co aed
with any related secondary element, and (4) selecting only 0 e

veviable included in the large pos.tive secondafieleMe4nt.1

17
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Significance tests are not known for all commonalities, but the

Uniqueness Uj is the contribution of X to the SMC after all

other 'regressors are included in the regressor equation. , The

test for a signlficant additional contribution to the An is

k

I

u

FlN-m-r 1-R
2

,y12...m
(N-mr1).

the square root of which is distributed as t with N-m-1 degrees

s;of freedom. This significancestestis equivalent to testing that

1

.

the partial regression coefficient 0 is 0. An ipsignifiCant Fi
. J

2r t indicates that the contribution to Ry
12...i

of X
3
.is con-

istent mith the hypothesis that $ is'zero and the value U is

e-to sampling error. The` individuai,testi of many paitial

r gression coefficients are commonly/ u#ed*although'the tbsts are

not strictly independent. t

The significance.of the contribution of several or all

variables ta the SMC may be calculated by summing the unique

contributions of the several va;iabies and their common elements.
^ '

For example., if m 4, the test of the contribution of X and X
3 i 4

would be

C.
7N-S

*
I:WE

N-S
2

where C* is the sum of the elements'that would be exCluded'from

the SMC if the K regressor were dropped. This test is equivalent

to testing that all K 0310 re simulttneouply zero.

1 A



Although there is no known direct test of the egnificance.
4of a commonality, we may judge Orir size unders.e'tein circumstances.:

FoT.. example, if m r 4 and we are interested in t_N magnitude of

C34, then we might test the hypotheses.

V

H
3

: U'
3

4
: U

4
a 0

H 11/*U+C 'BO34
r3

U4
34

as shown above. If all three hypotheses are accepted; then
A

,C 34 is not inconsistent with a population value of zero.

If H
3

and H
4 are accepted, but H34 rejected, then we may conclude

the C
34 is non-zero. Xf,lowever, or H4 is

0.
not accepted,

then H
34 does not isolate C34 and any Inferences are dubious.

I

This procedure can' be used recursively for more complex common-

alities.

,e This testing procedurce has severe inferential problems even

though examples where H
3

and H
4 are accepted while H

34 are rejected

are easy tolonstruct.

'values of.,t e uttiquenesses of. U3 and U
4 were preciselyzero, then

the value C
3

The problem is'th t if the actual population

correlated i

problematic

to ques,tion

must also be zero, unless X3 and X4 are perfectly

1ich case C
34 is indeterminate. It is,-therefore,

ccept zero values for U3 and U4, thencontrnue.

size of C34. J.

/



3.0 Numerical', Example

aThe purpose of this section is to show what4commonality table looks

like and tosive.some hints as' to how one =lea 19ok at a.table. Computational
Procedures will be discussed in section 7.

Figure 3-1 displays all popsible'squared multiple 'correlations between

one regressand and four regressors. These fiVe variables were collected on
a. sample of eighty students.

(INSERT FIGURE 3-1 ABOUT HERE)

'$

Figure 3-2 displays a commonality tablet The SMCwieth all regressors
entered is .6825 which indicates that over 68%''of the sum of squares of Y can
be explained by these! four variables. The F statistic for this SMO is 40.30
(ndf4,75) which ia_highly significant. The simple squared correlations range
from ;3967 to .6351. and are individually

highly significant when subjected to
the ordinary test or the significance of a correlation. We conclude, therefore,

20
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3
Figure 3-1

Squared Multiple d6rrelations (r)
for All.combinitions of 4 predictors

1- 0.3967 . 1
'2 0.4643 :2
'3 0.5378 12
4'. 0.5269 3.
5 0.6080

, 13
6 0.5783' .' 23
7 0.6245 123
8 0.635,1 4
9 '0.6681k 14

10 0.6443 24
11 0.6707 124
12 0.6528 34
13 0.6821 134
14 0.6571 234
15 , 0.6826 1234

21
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that there is some predictable varian worth loOking at.

ct

(INSERT FIGURE 3-2 ABOUT HERE)

22
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Figure 3-2.

TEST OF C04434ACITY PMRAY1.

FOUR VARIABLE P108LEM

THE DEPE1DEVT'VARIABLE IS

SET ACRONYM SET

FIRST ORDER
LE( X )

SECOND ORDER
12
13

C 14

74
" 34

0.0255

0'.0038
0.0009
0.0207

THIRD .:0RDER
C 123 0.0030

2 124 6.0311a

C '134 0.0264
C 234

FOURTH ORDER .
1254 0.2853

21 X / (squared simple correlationP 396T

? t I' )(squared mu:lttple

correlaration )

0.6826,

rsCNIT 0.0374

F74
5

= 40.30

t75 = 2.45

X211

X3:

.t75 = .34

t
75

= 1.68

X4: t
75

= 3.70 '

f

1 SET 2 SET 3 SET 4

0.0005 0.0119 0.0581

00036
0.0009

0.0207
0.0018 0.0018
0.0160 '0.0163

747 0.0747

0.0030 - 0.0030

0.0311 0.0311
0.0264 '0.0264

0.1228 0.1228 0.1228

0:2853 0.2853 0.2853

0.4643 0.5269 0.5.351

0.6826 0.6876 0.682

0-.0007 0.0174 '0.0952



Tre are no negative commonalities in this example. Negative

coMmonalities are possible but not common in educational data. A

negative commonalitindicates that one variable actually confounds

the predictive power Of,Another. A hypothetical example may ex- .

N.,

plain this phenomenon. Bothweight. and speed are important to

success as a'professional football player and each would be

moderately correlated with a measure of success in football. Weigh

and speed are presumably negatively'correlated and would have a

negative commonall_ty in predicting success in football. If both

weight'and. 'speed are known, one would expect to make:a. much better

predi-ction of success using both variables to select fast, heavy

aro rather than just selecting the fastest regardless of weight or

heaviest regardleid/pf.speed. Thus the negative commonality in-.

dicates that explanaory'power of eithet,is,greater when the other

is also used.

The uniquenesses are shown at the ,top of the. figure 3-2 and

the tstatistics at the bottom. The uniquenesses indicate the

amount of variance explained by each variable after all other

variables are entered into the equation. Xi and X4 have signifi-

cant large uniquenesses and t statistics. X2 does not look worth

keeping, and X3 could be a sampling fluctuation and seems to add

little.

Since one and perhaps two variables add little, we ask where

the original predictive power of these variables went. The common-

ality C1234 indicates that 28% of.the explained sum of squares is

common to the four variables, that is, entering any one of the four

variables into the equu ion mill increase the SMC by at least'.28.

24



Clearly, much of the explanatory power of these four variables

is redundant.

The commonality C234 is fairly large indicating that the
use of any of-these variables will explain some of the same

predictable variance as the others. The next largest value is
C

4 which shows the common element of 1
3

and X4.
4'

To Summarize, the table seems to indicate that X2,X3, and
X
4 predict much the same part of the explainable sum of squares,

in fact, the predictive power of X2 is almost completely common
to the others. Since X

4 is most powerful and X
1 is most different

Trom X
4' we may expect that the SMC R2

y14 is quite large.

Figure 3-1 shows us that this SMC is .6684 or just .0142 less

than the,SMC with all four variables.

25



4.0 Two-Variable Commonality

Commonality is ?a complex measure so it may be instructive to look

carefully at the simple case of two regressor variables.

Thd squared-multiple correlation can be expressed as a function of

three simple correlations by

r?
l + r

2
- 2r

yl
r
y2

r
12:2 y y2

(1) R
y(12) 21 -r

12

and the commonality written as

2 2 2(2) C
12

= r
yl

+ r
y2

R
y 12

The commonality is, therefore, a contrast between'whattheSMc would have

been if X
1

and X' were uncorrelated (i.e. r
2

l
r
2

2
+ 42) and what the actualy y

SMC is (i.e. R
12

).
y Substituting (1) into (2), we have

2 2. 2 22ryiryti2 r
yl

r
12 y

r r
2 12

(3) C
12

=

1-r
2

12
'441

If Y12 = 0, then the SMC is them of the squares of the two simple

correlation coefficients and thus the commonality is,zero and the uniqueness
of U

1 y
is then R

2

l
and of U

2
is R

2
If r

12 does not equal zero, then they2

SMC may, be larger or smaller-than /
+ r2

'

2 2 depending on the sign °of ther
yl . y2

product ry
1
r
y2

r
12 and the magnitude of r

12.

The complexity of the relationship between r C12, and R
2

is shown
y12

graphically in Figure 4-1. For this graph, r and r, are considered fixed,

constants, .3 and .2, respectively. ,Given particular values of r
yl

and r
Y2,

r12 cannot in general range over the entire area between -1 and +1 since

extremely high or extremely low values would result in a non-positive definite

correlation marrix. The bOundaries for permissible r12 are
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r r -.)/ < r < r + Pi

(r
2
-1)(r

2
-I)

Yl Y2 2 2 12 - Y1 Y2(r -1)(r -1)Y1 Y2
Yl Y2

-1 1
which for this example gives the boundary -.8747 < r12 <,.9947 .

Figure 4-1 graphs' the 'values` of Ry12 and C12 as fund4qhsspf r
12

over
the permissible range. All negative values of r12 are associated with
negative C12 and very high positive values also have negative commonaLies.
The value of C12 is still small at its maximum (r12 'ma :667) where the \-

squared multiple correlation is at'its minimum. The C12 curve is a (displaced)
2mirror image. of the Ry12.

This graph brings out the important point that the commonality may
also be associated with high positive values of r12.

The relationship of X1, X2, and Y are shown graphically as in Figure 4-2.
Tfia two. vectors, Xi and X2 are of-unit length and represent variables Xi and
X2,'the vector Y represents the projection of the (unit length) vector Y on
the space spanned by X1 and X2. The distande OA is ryl, OB is ry2, and OC is
r12. The length of the vector OY is.the multiple correlation Ry12

The distance of Ay is U2
/2

and the distance 13^

Y
is U 1/2 . The

3.

,vector OY is the square root of R2
yl

+ II?
2 which is. what Y would.y

be if X
1 was orthogonal to X

2 while 0A(ry1) and OB(ry
2
) remained

constant. (OC would be zero.) since the commonality is the
squared of OY minus the square of OY, QY > OY implies a negative
commonality.

Figure 4-3 shows the effect of r12 on the multiple correlation
and commonality over the range of permissible values while holding
f
yl and r

y2 constant. First, the terminus of any vector Tepre-
.senting the multiple correlation must fall on the line Y'Y" since
its projection OD. X

1 must be orthogonal and of length OA. The
4%t 2.



S

smelliest 'possible angle (or largest cosine) of X
2
0X

1
is represented

by X1OX2 ,k since a vector perpendicular to OX, must meet the

vector perpendicular to OX1 within the unit circle. The largest

possible angle is X1OX2 for the same reason. The actual vector

X
2 must lie between X' and X"

2.

The dotted lines from the origin to y+ and y- represent the

two vectors where the commonality would be zero since the multiple

correlation would be or /-71---I ., If X1 and X
2
arer

yl
+r

y2 OA +OB 1

correlated highly enough, then tht vector representing the multiple
A '

correlation will terminate between y- and y' in whith case the
0-

multiple correlation is larger than 1-1-71
r

and the commonality
yl y2

+r
.

is negative. Also, if XL and X2 are correlated lowly enough, then

the terminus of the multiple correlation vector would fall betweenA
.

y+ and y" in which case the commonality would be negative. If the

vector representing the multiple correlation terminates between- _ , .
. .

y+ and y- , then the vector is shorter than and thery17y2
commonality is positive.
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These graphs show that the comional ty of two variables
is not a vector but the difference between be squares of two
vectors and thus should not be considered a variance in itself.

...

..
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5.0 Sets of Variables

Commonality tables become unmanageably large for even

fairly*dest number of regressors. For example; if there are
.

10 regressors the number of lines in the table is 1,024. :It is--.

therefore important toriduce the table in size.

One.method iito group the'regre sors into logically
\

similar, mutually exclusive sets 'and erform the commona\lity analysi

on the sets. The &Kb's used for the commonality analysis,` are the

SMC's,f,or all' passible combinations of sets of variables, not of

.
)

individual regressors.

The commonality able computed.,in this'manner is a summ ry

of the elements of a commonality analysis of the individual

gressors. Considering ti he example in section 3, the four vari bles

may be grouped into two sets, set A containing xl and x2,-and se

containing -x3 and x4 . Thecommonality and uniquenesses of the

sets are

1.

33

v



12'

+U \-1- C34

+ C + C + C13 23 24

+ C12, + C124 + t134 C234 + C1234

The commonality /table is shown in Figure 5.'

The algorithm-Shown in section 7 is also appropriate for.sets using
the SMCs of all possible sets of variables as input.

.

CoMmonalityanalysis with sets of variables
may require ma rix inver-

sion:with a large number of variables. Some of these variables- may be
highly correlated with the result that the analysis is subj t to

4
pbssible numerical instability. The user shduld be caref to make sure,
the correlations

among'the independent variables are not extremely high.
74475*Numerical experiments by'Teaton, Rubin, and Barone (1972) have shown'that.

Very high collinearity,will affect regression coefficientd substantially,
but 4d not ,affect

squareaultiplecorrelationstoo seriously,. Double
precision is probably

sufficient to avoid mostproblems of this sort.

C
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UB .1447 .1447

CAB
.5080 .5080 .5080

537a .6527 .6825

Figure 5. Coin onality table for sets
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Creager and Aoruch (1969) suggest a combination of factor

analysis and regression analysis as an alternative to commonality
.

analysis: Using the notation of this paper, they argue that*the

matrix X may be factored'as

X ZF

where Z,is an orthogonal Nxf matrix of factor scores and F is

an fxm matrix of factor loadings. Using maximum likelihood

techniques (see Joreskog, 1967), one can estimate the matrix F

such that

no,
R
xx

where R
XX is in general an ap roximation to the correlations

among the regreisors, and the model becomes..(if the

regressors were of unit varian e)

y ZFB

0 is estimated, by regression analysis. Since Z'Z mg I, the

predictable

elements 'in

2variance o-
Y

is simply the sum of squares of the

the vector FO .
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If one can hypothesize an underlying factor structure,

then the Creaser and Boruch method is the natural way to identify

the contributions cif the factors, and the method pay be useful

for exploration of,found commonalities, but commonality analysis

differs in that it simply locates elements of the SMC in the

given variables without postulating underlying, orthogonal variables.
It would seem that the two methods complement.eich other and may
be used together, commonality analysis perhaps helpingsdevelop

the factor hypothesis.
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Multivariate Commonality

Multivariate commonality is a technique for assessing the common and

unique predictability of several regressors or sets of regressors on a set
of pi, 1 regressands. the technique is a simple generalization of univari-

ate commonality and the results of the two will be.the same if the value of
p is unity.

Multivariate commonality is to multivariate analysis very much

as\univariate commonality is to regression analysis.

One simple method of assessing the commonalities of several regressors
on a set of regressands would be to compute

a commonality table for each
regret: and, then sum the several commonality

tables into a single multivari-
ate ta . Although this might be appropriate for some problems, this

.proce4u9 might overweight the commonality if two or More of the regressands

were very highly correlated with each other and similarly correlated with
the regressors. A high commonality for one of the regressands would also
show up in the commonality tables of its correlates with the result that
the multivariate commonality in the summary table would be very large or,
in a sense, counted twice or more. This procedure also varies from common
practice in multivariate analysis.

An alternative procedure that avoids redundant Predictive power trans-
form; the regressands such that anew set of regressands

are computed which
have the property that each has a unit variance and is uncorrelated with the
other transformed regressands. The transformed variables contain all of the re/eva
information in the original regressandS and can be transformed back to the
original if needed. Since the transformed regressands are uncorrelated, the
pediaion of ono is not associated with the prediction of

multi var.) ale commonality proposed here can be thought

38
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transforMation to unit orthogonal regressands, then a.univariate commonality

analysis on each transformed regressand, and sunning the univariate connonal-J

ity Into a mu] tivariutt. table.

There arc many ways to transform the regressands to unit orthogonal

orientation. One way is to perform a principal components analysis of the

regressands, compute component scores, and then rescale the component scores
for unit variance. Alternatively,_a Cholesky,transformation of the regressands

can be performed, and residual scores with vat orthogonal orientation com-
puted. procedure is equivalent to computing a Gram-Schmid decomposition

of the regressands with the result that the first regressand is simply

resealed, the second is taken as a,residual from the first, thethird as a

residual Vrom the'first and second and so forth. Since the Gram-Schmid

method is-computationally simplerand the commonality tables,uAder either
proceduw are identical, the Gram - Schmid method is used here.

The actual calculation of multivariate commonalities is only ,very

slightly more complicated apd expensive
than univariateqommonality. The

transforthed reeresiands do not need to be computed for each member of the
sample. A correlation matrix including both the (untransformed) regressands
and the regressors is computed. The correlation matrix of the regressands
can be transformed using the MSTD operator which also transforms the correla-

,

tions of the regressors and the regressands. The calculation of all possible

regressions of the regressors on all of the -transformed regressands can be

computed using the same'number of SWPs as in the univariate case. (For a

complete discussion of the MSTD and SWP operatOrs, see Beaton (19610.) The
SWP operator computes the set of terms of the form 1 - R2 where the R

2

are the squared multiple
correlations which must be summed. This sum is ,called
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tha trace of the explained cross-prducis matrix. The traces for all combina-
-,

tiona of predictors may tie converted to MUltivariate commonalities by the '

Barone algorithm discussed in the next seCtion>

NN
Multivariate commonal ty is related to multivariate hypothesis testing

in a manner analogouS to the relationship of univariate commonality to

regular testing. If the Beaton operators are used, the matrix of sums of

squared and cross-products of the residuals is computed after each regression

This matrix is called'E
s

where the subscript s represents the particular

regression thacwas removed. The trace of E
s

is the unexplained sum of

squares and thus p minus trace (E
s

) is the explained sum of squares.

The matrix E
s has, the propeity that its latent roots are

1 - A where A is the canonical,
correlation between the re-

,

gressors in s and all. regressands. The determinant of.Es is
Wilki' A which can be

0
used for testing the hypothesis that there

As no predictive power in)the regressors in s.

Each of the,multivariatd uniquenesses can be tested for
significance. To test a particular uniqueness, one computes the
E
0 for that uniqueness, iie.,'sweeps all other regressors

4(or sets of regressors), and computes the matrix E, the residual
after all regxedsors are swept. Wilke' A statistic is

det (E)A mi

dot (Es)

The A statistic maybe used to test the hypothesis that the
particular multivariate uniqueness is zero which is equivalent to
testing that the regressOr(s) add nothing to the canonical

:correlations..

40



The raves froh which the multivariate commonalities are computed are
noi. bounded by zero und unity um ure the &awed

multiple' corrautionh. Tf

the regress ands are completely predictable, then the trace would be p , the
number of roressands.. However, the traces associated with particularr-

regrOSsors or combinations of regressors may have upper bounds substantially,

less than y . in fact, the maximum_trace for a single regressor is unity.
The maximum tr4e for A set of regressors is the number of regressors or the
number ofyegre4sands, whichever is smaller. Since the same traces cannot
be large, the co onftlities may seem disappointingly small. Each commonality
should be judged in comparison to its maximum.

110
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7..0 _Analysis of Variance

Commonality analysis can be a useful akijunet to non-

orthogonal analyses of variance and covariance. The analysis

of variance,<Is A,procedure to partition the total sum of squares

of a "dependent" variable into parts associated with one or more

"independent" variables or factors f.or the purpose of estimating

mean squares and 'testing hypothesta. We consider here only

situations in which there are at least two factors. If the ex-

perimental design is balanced, then the partitioning of the sum

of squares is straightfOrward and the part associated with each

factOr is distinct, thus the sum of the parts associated with

each factor plus the error sum of squares add to the total sum

of squares. A balanced or orthogonal analysis, therefore, does

break up the whole, into its parts. If the design is/non-orthogonal;

i.e., not balanced, then parts of the tot sum of squares can be

attributed` to more than one factor with the exult that the total

sum of sqUares is not broken up into distinck parts, associated with
factors or'their interaction.

'There are a number of ways in which non-orthogonal analyses

can he performed. One way is to order the factors a priori, and

assigw the common part of the sum of squares to the first factor

in thelordering, thereby assuring the allocation of all squares

to some factor or to error.

Mother proceddre is to treat each factor or interaction .

separately so that all othet factoSs are fitted before any hypothets

is tested. This procedure is equivalent to treating each hypothesin
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.e'
-

. .
.

.test as a test of the-tignificanceof
regression-coefficients. Pow:.

eider -the model

MO: Y 4 C
.

where the 'matrix X contains dummy variables corresponding to row,

'column, and interaction effects and the vectotAl is partitioned

'accordingly_. Using the notation from the previous Sections, let

X- he the subset of dummy variables representing a set of effects

ths t'OW-effects). The test of the significance of the,

corresponding parameters Os is forted by specifying the hypothesis,

H : 0 D
.8 s

and thd alternate model

M '1 yr,- x-0- t
0

M
s implies R

s
is true. The sum of squares due-to the Ss is then

SS(Os) 'Xi(yT)-14y
and the appropriate F statistic is

M
.

08(0.5)/ns
F Olt

N-n
(yIY-y1X(X'X)-1,0y)/(N-n)

Each set of effects can be tested using this procedure alfhough the
touts are not strictly indoPendent as is also the as with orthogons]
designs. It is convenient tó_c011ect the sums of squares, degrees
of freedom,7mean

squares, ind F statistics in an analysis of variance
tshle. 'However, the sums sqUanes allOcated to various factors



plus the error sum of squares.do not add up to the total; this

the whole is not completely divided into Its parts.

..The analysis of variance can also be approached through

commonality analysis. the total sum of squares can be,partitioned

into parts attributable to each set of effects and each combination

of -sets of effects, These common and unique elements added to

the error sum of squares add to the total sum of squares. The

tests of the uniquenesses are equivalent to the tests of the sets

of effects shown above. However, since there are iPo hypothesis

tests available for commoeelements, part of the motivation for

partitioning variance is lost.

Commonality analysis, therefore, gives new information for

non-orthogonal analysis of variance since one can investigate the

sums of squares that either did not enter into any hypothesis test

or were entered into more than once.,
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8.0 Algorithms,

Commonality analysis requires two cOmputatiOnal steps: first,

4

computing all possible SMC's and, then'cAputing the commonality elements.

This section discusses the two phases and presenti a complete FORTRAN sub-
.

routine..

%

A vector ,of all possible SMC can be computed using the algorithri

of Shatzoff (1968). Shatzoff uses the sweep (SWP) operator (See Beaton

(196h) or Dempster (3 963).which adds and deletes variables to a multiple
Figure

regression equation. The SMC's must be computed in the order shown in/

The Shatzoff algorithm has the property that each of th 2m -1 sweeps

computes a different SMC The, subprogram presented below modified the

method by replenishing the matrix occasionally in order to avoid buildup

of computatiOnal error.

Although commonality elements can be computed by first forming, then

solving simultaneous equations,'an algorithm due to Barone is simpler for

hand calculation and requires far less computer memory. The algorithm

roquiren as input. the SMC'n. An additional dummy LMC of value zero as

the zeroth,element is also needed.

Each element in an m -variable commonality table may be represented

as. C
s

where s is the subscript contain4ng n; < m integers in
%r

numerical order and representing the indices of the variables included.

in C
s

. The complementary subscript g contains the n-=m-n
s

indices

not'includedin, s. If all m indices are included in, s , then g

is considered to contain no indices.

.f The Barone algorithm begins the commonality computation of any

C
t;

by follni ng -rum equati on with the firsst. el mon t au; t
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Ommonn.lity
Element G SMC IOC

C 0 1 2 12 - 3 13'_23 1123 14 114_, 214 1214 3h 1314 2314 12314 r

c
123h

c
234,1

..e
1311

C
I

c12h

Cm,

`G
hl3

C
,.
= 11

14It

C123

C23

C
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U3C .
3 ., 3

C12

C2 - 112

C
1

= U
1

-1

.

1

-1

1

-1

-1

1

1

-1

1 -

-1

i..1

1

1

-1

.

.

-1

1

1

-]

3.

-1

-1

1

-1

1

1

-1

1

.

-1

-1

1

1,

-3.

.

-1'

1

.

1

.

3.

-1

-1

I
.

-1

1

.1

.

-1

1

1

- 1

.

.,.

1

-1

-1

1

.

-1

-1

.

1

.73.

-1

1

-1

1

-1
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1
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'
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R1
2
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Fir. 7.1. onality equations.



1

R2
'

that is, the SMC with complementary subscript and negative sign...

Each index in s;,is then appended one at a time to those already in ;

to form set or suhseripts RI; vaeh SMC with one of the subscripts

in 711 is added Lo the equation. The integers in s are then appended to

; two at a time to form subscripts g' , and the corresponding SMC

are subtracted from the equation. This process continues with more and

more indices in s appended s and with the sign of the addition

changing at each step until all n
s

indices in s are used,

For example, let us find the equation for C
13

in an analysis with

foUt variables = 4) . The complement of the subscript s = 13

is ; =-21i , thus the first element is

2
-R
y2h

Appending the elements of s one at a time to s
-

, the subscripts in

;' = (124,234) and.thus the next elements added to C13 are

,2 2
"Y124 + "Y234

Finally, appending the elements of s two at a time, we have S --

(123h) and thus next clement subtracted from C
13

is

2

RY123h '

The ecivation for C
13

is then

2 2
C
13

= -RY. + R"
14 Y23I 1
+ R ) - R-

24 Y121234
FOr another example, C123)4 has a complementary subscript 0 ,

thus the first element R
2

0
is subtracted

-0 ,



(.1 .h In1.1.gor n I tt tiddc:d cnn at at timi.,

02 n2 1,2 n2+
"il '' "Y2 "Y3 + "Y4 '

then the values selected. by pairs of integers are subtracted,

2 2
-412 -413 -414 423 -"nY24 7"nY34

and the 3 index combinations added

2 2 2+ R_ + +R
2

+-x123 x124 Y134 x234 '

fun1, firta13.y, the MC th till- subscripts is subtracted, -

234

The commonality eletent i

n2 n2
C1234 = "Y2 3

102 .02 ,2
"Y14 --Y23 -"Y34

+ R2 '+ R +
2

Y123 Y124 R7234 "11 -1234

2 . 2

The equations for all commonalities for

I

-"2

4 a e thiown in Figure

Y.). Tho.lefi. hand column contains the commonal ty element for a four

variable problem end the right hand columns contain the squared multiple

correlations and their relative location in i computer rotkam. The main

body of the figure contains the 'matrix G which may be u ed in the equation

p,

g = Gr
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t s .4

to compute the'commonalities from the vector of SMC's. The matrix G

wan computed using the Barone algorithm not by matrix inversion, but

rnny rimeked by fuming a matrix
-]

derIsl lig the relationship of

the c
s

and SMC in a matrix, then multiplying GG
-1

which must

result in an identity matrix.

The reader may verify the matrix G and the commonality table in

Figure .3.2 by multiplying G by the vector r in Figure 4;,.1.

A compute subroutine for computing commonalities is shown in

Figure 7.2. The ubroutine accepts as input a cross- products op corre-

lation matr computes ail possible SMC, anaithen a commonality table.

Severe] regressands d sets of regressors may be used. The program

does not compute multivaria

The computer program uses the binary natu e of computers to advantage.

The presence or absence of a subscript is coded b a zero or one bit in

the appropriate position of a memory register, The binary word

evaluated us the location in SMC table of the appropriate element. For

example, the.complement.of C24 os

is

comp (C2h) = 01012 = LOC(5) = 14
13

The variables position are read from right to left, thus'01012 indicates

Lhe'presenve of var.inh163 X
1

and X
3

lino call i fig Ittl11(11(1! Mid dilnitthll Or parninaLers irs uhown in

Mitre 7.2.,
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CALLING SEQUENCE ,

.

-CAM. COMMON (C ,MPI ILOAC,LH ,NH ,IK,NK ,TITL ,LDADAMHACH)

PARAMETEM

(teltmri) : INFpvcRoss-pilovucTs MATRIX

MPI : DIMENSION OF C

LC (NC) : riTtGER VECTOR CON,TAINING THE ROW (COLUMN)
NUMBERS OF THE CONCOMITANT VARIAtLES.

NC : NUMBER OF CONCOMITANTSARIABLES DEFINED IN
LC I..

LR,(NH) : INTEGER VECTOR CONTAINING THE ROW (COLUMN)
NUMBERS OF THE INDEPENDENT .VARIABLES'.

NH
: NUMia'OFINDEPENDENT VARIABLES DEFINED
' :

IK (NK)
: INTEGER VECTOR CONTAINING THE NUMBER OF

INDEPTODEN'P VARIABLES TO BE GROUPED FROM THE
LH ' 1.1ST TO FORM EACH OF TIU NK SE'I'S 1- USED

IN Till'; COMMONALITY ANALYSIS. THE SUM OF THE
ELEMENTS IN THIS VECTOR MUST EQUAL NH.

NK
NUMBER OF SETS TO BE FORMED USING THE '1K'

TITL ANY 'BCD' HEADING OF LESS THAN 120 CHARACTERS,.
THIS WILL BE PRINTED- PRECEEDIiiG EACH COMMON-
ABILITY TABLE.

bD,
INTEGER VECTOR CONTAINING THE ROW (COLUMN)
NUMBERS OF THE DEPENDENT VARIABLES. A
SEPARATE COMMONALITY TABLE WILL BE COMPUTED
FOR EACH DEPENDENT VARIABLE.

NUMBER OF DEPENDENT VARIABLES

nit;
: Tin r: omit mum' CONTAIN THE Al aPIIANUMBERIC

TEMP; OF BA Cif DET'EN DEN T VAR! ABLE THE TT TLES
MUST CORRESPOND TO THE 'VARIABLES DEFT NED IN -
THE 'LDs LIST OF DEPENDENI VARIABLES.

ii11 2. ,Un vari ate common al ity program.
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HACK (NK)

CALLED .ROUTINES

SWPSET,NEWPG

EXAMPLE'

: TUTS VECTOR MUST CONTAIN THE ALPHANUMBERIC
TITLE:',, 11:M1,11 DV THE 'NK ' t I 1)11111.1 NED It?

. 11.111 1.1K' 1,111111.1.

GIVEN: 'C' IS A 10 x 10 CROSS PRODUCTS MATRIX.
THERE APE 2 DEPENDENT VARIABLES LOCATED IN POSITIONS

1.and 2 IN THE MATRIX.
THERE ARE 8 INDEPENDENT VARIABLES LOCATED IN POSITIONS

3 thru 9,

POSITION 10 CONTAINS THE VARIABLES CORRESPONDING TO
THE OVERALL MEAN.

IN THIS EXAMPLE' WE WANT TO ACCOMPLISH THE FOLLOWING FOR EACH
OF THE 2 DEPENDENT 1ARIABLES

1) ADJUST 'PILE GROSS PRODUCTS MATRIX BY REMOVING THE '
GRAND MEAN

2) FORM 3 'SETS' FROM THE INDEPENDENT VARIABLES. THE
FIRST SET CONSISTING OF VARIABLES (3, 4 and 6),
THE SECOND SET OF VARIABLES (5, 7) AND THE THIRD SET
OF VARIABLES (6, 8, 9),

3) PERFORM A COMMONALITY ANALYSIS USING THESE 3
SETS OF INDEPENDENT VARIABLES.

THE FOLLOWING FORTRAN STATEMENTS WILL ACCOMPLISH THE REQUIRED
ANALYSIS.

DIMENSION C(10,10),LH(8),LC(1),IK(3),LD(2),HDS(2),HACR 3)

DATA LH/3,4,6,5,7,6,8,9/ ',NH /8/
DATA IK/ 3, 2, 3, / ,NK/3/
DATA 14/10/ ,Nr11./

DATA IX/ 1 , N DP/
DATA 111); ; /6111E1'., 1,6111)1.3'. 2 /
DATA 11ACIt/611SET i ,61ISET 2 , 6HSET 3./

CALL CoMMON(C,10,LC,NC,LH,NH,7K,NK,12H ANY HEADING, LD,ND,HDS,
NACR)

Fig. 7.P (Cont'd). Univariatc commonality program

t,
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